Introducao ao Shell Script

Aurélio Marinho Jargas

http://aurelio.net

Introdugé@o ao Shell Script - Aurélio Marinho Jargas

Indice
oY 0] o) (=3 o o U | = o 1
LY 0 === 111 = L - [Y 2
O QUE E 0 SNEILL ... e e e e e e e e e e e e e e e e e e e aaaaaa 2
1T 1= | o]] | AP PP 3
FAN (=TS0 [N o7 1 1= 07 PP 3
(O 00 o) o100 1=Y 10 I 1= | T o | o) 4
Passos para criar Um SHell SCHPL......cooeeeieeeeeeeeeee e 4
Problemas na eXeCUCA0 dO SCHIPT.....cceveeeeeeie e e e e 5
O primeiro shell script (MEIhOrado)......cccceriiiiiiiiiiiiiisisssssssssssssssme e e e e e s s nnnsnes 6
Melhorar @ SAIAA NA TEIA ... e e e 6
[Nteragir COM O USUANIO.......ceeeeeeeieiietirtttee et e e e e e e eeeeeaaeeeeeessaaaaasnnnnnnnnnnnsssnneeeeeeeaaaaaaeens 6
\VI=)[aTer=TaoXofoTo [fo o Mo [0 I =T o o) APPSR 7
[T=Y 0T 0) o 10 T=1a Vo Lo 1= T 11 - Y 8
V=LA LYY IR 8
Detalhes SODIE 0S COMANAOS. .. cn it e e e e e aaaas 8
@] oT0) 0 0F- 110 [0 1 (=11 UUTRERTR TP 10
Tarefa: script que teSta ArQUIVOS. iiiee e 11
(01 [o3=Y | Lo X3 1 1= K= 17 £=1 0 10 L (o 1= 12
Recebimento de 0pcOEeS € PArAMEIIOS. . .uuuiiiiieeieeeeeeeee e e e e e e e 12
EXPress0es aritMEtiCAS.uuvieeeee i e e ————————— 12
 BOE 8 W e e e e e 13
=Y o [o Y= 15
(T =TT 01 0 111 = o o 1= 18
[RTEXST 01013 £ X8 [0 XM= =) (o3 (o [0 - 19
(=] = = 10 [0 1740 1P 19
L A C A0 SN oo 19
Z A0 . S N oo s 19
RS0 1S 110 =] o SRR PPPRRR 20
18172 1 (1 T [18 o PSPPSR 20
US LS. S ettt ———— 20
SIS S N oo s 20

Sobre o curso

Nome
Introdugéo a Shell Scripts

Instrutor
Aurélio Marinho Jargas (http://aurelio.net)

Objetivo
Ensinar aos alunos todos os conceitos necessarios para poderem fazer sozinhos
scripts simples em shell.

Pré-Requisitos
Nocdes basicas de informatica e operacido do sistema pela linha de comando. E
desejado, porém nao obrigatério, nogdes basicas de programacao.

Publico Alvo
Desenvolvedores, administradores de sistemas, programadores e interessados em
geral.

Duracao
8 horas

Apresentacao

O que é o shell

O shell é o "prompt" da linha de comando do Unix e Linux, é o servo que recebe 0s
comandos digitados pelo usuario e os executa.

O shell é aquele que aparece logo apos digitar-se a senha do usuario e entrar na tela
preta. Ou na interface gréfica, ao clicar no icone do Xterm, rxvt, Terminal ou Console.

localhost login: root
Password:

Last login: Fri Apr 16 01:57:28 on ttyb
[root@localhost rootl# _

Ali esta o shell, esperando ansiosamente por algum comando para ele poder executar.
Essa é a sua funcao: esperar e executar. Cada comando digitado € lido, verificado,
interpretado e enviado ao sistema operacional para ser de fato executado.

No Mac OS X, o shell esta em Aplicativos > Utilitarios > Terminal. No Windows é
preciso instala-lo com o Cygwin.

Funcionando como uma ponte, o shell € a ligacao entre o usuario e o kernel. O kernel é
quem acessa 0s equipamentos (hardware) da maquina, como disco rigido, placa de video
e modem. Por exemplo, para o usuario ler um arquivo qualquer, toda esta hierarquia é
seqguida:

USUARIO --> SHELL --> KERNEL --> DISCO RiGIDO

Para os usuarios do Windows, é facil pensar no shell como um MSDOS melhorado. Ao
invés do C:\> aparece um [root@localhost root]#, mas o funcionamento é similar. Basta
digitar um comando, suas opcoes e apertar a ENTER que ele sera executado. O comando
deve estar no PATH, mensagens de aviso sdo mandadas para a tela e Ctrl+C interrompe o
funcionamento. Isso tudo é igual em ambos.

Mas o shell € muito mais poderoso que seu primo distante. Além dos comandos basicos
para navegar entre diret6rios e manipular arquivos, ele também possui todas as estruturas
de uma linguagem de programacao, como IF, FOR, WHILE, variaveis e fungdes. Com isso,
também é possivel usar o shell para fazer scripts e automatizar tarefas.

Este sera o nosso foco: scripts em shell.

Introdugé@o ao Shell Script - Aurélio Marinho Jargas

Shell script

Um script € um arquivo que guarda varios comandos e pode ser executado sempre que
preciso. Os comandos de um script sdo exatamente os mesmos que se digita no prompt, é
tudo shell.

Por exemplo, se de tempos em tempos vocé quer saber informacdes do sistema como
horario, ocupacéo do disco e os usuarios que estao logados, é preciso digitar trés
comandos:

[root@localhost root]# date
[root@localhost root]l# df
[root@localhost rootl# w

E melhor fazer um script chamado "sistema" e colocar estes comandos nele. O contetido
do arquivo "sistema" seria o seguinte:

#!/bin/bash
date

df

w

E para chamar este script, basta agora executar apenas um comando:

[root@localhost root]# sistema

Isso € um shell script. Um arquivo de texto que contém comandos do sistema e pode ser
executado pelo usuario.

Antes de comecar

Se vocé esta acessando o sistema como usuario administrador (root), saia e entre como
um usuario normal. E muito perigoso estudar shell usando o superusuario, vocé pode
danificar o sistema com um comando errado.

Se vocé nao tem certeza qual o seu usuario, use o comando "whoami" para
saber

Como o prompt de usuario normal é diferente para cada um, nos exemplos seguintes sera
usado "prompt$" para indicar o prompt da linha de comando.

O primeiro shell script

O primeiro shell script a fazer sera o "sistema" do exemplo anterior, de simplesmente juntar
trés comandos em um mesmo script.

Passos para criar um shell script

1. Escolher um nome para o script

Ja temos um nome: sistema.

& Use apenas letras minusculas e evite acentos, simbolos e espago em branco

2. Escolher o diretério onde colocar o script

Para que o script possa ser executado de qualquer parte do sistema, mova-o para um
diretorio que esteja no seu PATH. Para ver quais séo estes diretérios, use o comando:

echo S$SPATH

Se néo tiver permissdo de mover para um diretorio do PATH, deixe-o dentro de
seu diretério pessoal (SHOME).

3. Criar o arquivo e colocar nele os comandos

Use o nano, VI ou outro editor de textos de sua preferéncia para colocar todos os
comandos dentro do arquivo.

4. Colocar a chamada do shell na primeira linha
A primeira linha do script deve ser:
#!/bin/bash

Para que ao ser executado, o sistema saiba que € o shell quem ira interpretar estes
comandos.

5. Tornar o script um arquivo executavel

Use 0 seguinte comando para que seu script seja reconhecido pelo sistema como um
comando executavel:

chmod +x sistema

Introdugcé@o ao Shell Script - Aurélio Marinho Jargas

Problemas na execucao do script

Q "Comando n&o encontrado”

O shell ndo encontrou o seu script.

Verifique se 0 comando que vocé esta chamando tem exatamente o mesmo nome
do seu script. Lembre-se que no Unix/Linux as letras maiusculas e minusculas séo
diferentes, entdo o comando "SISTEMA" é diferente do comando "sistema".

Caso o0 nome esteja correto, verifique se ele esta no PATH do sistema. O comando
"echo $PATH" mostra quais séo os diretérios conhecidos, mova seu script para

dentro de um deles, ou chame-o passando o caminho completo.

Se o script estiver no diretério corrente, chame-o com um "./" na frente, assim:
prompt$./sistema

Caso contrario, especifique o caminho completo desde o diretério raiz:

prompt$ /tmp/scripts/sistema

e "Permissgo Negada"

O shell encontrou seu script, mas ele nao é executavel.

Use o comando "chmod +x seu-script" para torna-lo um arquivo executavel.

Q "Erro de Sintaxe"

O shell encontrou e executou seu script, porém ele tem erros.

Um script s6 é executado quando sua sintaxe estd 100% correta. Verifique os seus
comandos, geralmente o erro € algum IF ou aspas que foram abertos e nao foram
fechados. A prépria mensagem informa o nimero da linha onde o erro foi
encontrado.

O primeiro shell script (melhorado)

Nesse ponto, vocé ja sabe o basico necessario para fazer um script em shell do zero e
executa-lo. Mas apenas colocar os comandos em um arquivo nao torna este script Gtil.
Vamos fazer algumas melhorias nele para que figue mais compreensivel.

Melhorar a saida na tela

Executar os trés comandos seguidos resulta em um bolo de texto na tela, misturando as
informacgdes e dificultando o entendimento. E preciso trabalhar um pouco a saida do script,
tornando-a mais legivel.

O comando "echo" serve para mostrar mensagens na tela. Que tal anunciar cada comando
antes de executa-lo?

#!/bin/bash

echo "Data e Horario:"

date

echo

echo "Uso do disco:"

df

echo

echo "Usudrios conectados:"
4

Para usar o echo, basta colocar o texto entre "aspas". Se nenhum texto for colocado, uma
linha em branco é mostrada.

Interagir com o usuario

Para o script ficar mais completo, vamos colocar uma interagdo minima com o usuario,
pedindo uma confirmacao antes de executar os comandos.

#!/bin/bash
echo "Vou buscar os dados do sistema. Posso continuar? [sn]
read RESPOSTA

test "SRESPOSTA" = "n" && exit
echo "Data e Hordrio:"

date

echo

echo "Uso do disco:"

df

echo

echo "Usudrios conectados:"
w

O comando "read" leu o0 que o usuério digitou e guardou na variavel RESPOSTA. Logo em
seguida, o comando "test" verificou se o conteudo dessa variavel era "n". Se afirmativo, o

Introdugé@o ao Shell Script - Aurélio Marinho Jargas

comando "exit" foi chamado e o script foi finalizado. Nessa linha ha varios detalhes
importantes:

¢ O conteudo da variavel é acessado colocando-se um cifrao "$" na frente

e O comando test € util para fazer varios tipos de verificacbes em textos e arquivos

e O operador logico "&&", sb executa o segundo comando caso o0 primeiro tenha sido
OK. O operador inverso € 0 "||"

Melhorar o cédigo do script

Com o tempo, o script vai crescer, mais comandos vao ser adicionados e quanto maior,
mais dificil encontrar o ponto certo onde fazer a alteracao ou corrigir algum erro.

Para poupar horas de estresse, e facilitar as manutencgdes futuras, é preciso deixar o
cédigo visualmente mais agradavel e espacado, e colocar comentarios esclarecedores.

#!/bin/bash
sistema - script que mostra informagdes sobre o sistema
Autor: Fulano da Silva

Pede uma confirmacdo do usudrio antes de executar
echo "Vou buscar os dados do sistema. Posso continuar? [sn] "
read RESPOSTA

Se ele digitou 'n', vamos interromper o script
test "SRESPOSTA" = "n" && exit

O date mostra a data e a hora correntes
echo "Data e Horario:"

date

echo

O df mostra as partigdes e quanto cada uma ocupa no disco
echo "Uso do disco:"

df

echo

O w mostra os usudrios que estdo conectados nesta magquina
echo "Usudrios conectados:"
W

Basta iniciar a linha com um "#" e escrever o texto do comentario em seguida. Estas linhas
sao ignoradas pelo shell durante a execugao. O cabecalho com informacdes sobre o script
e seu autor também é importante para ter-se uma visao geral do que o script faz, sem
precisar decifrar seu codigo.

@ Também é possivel colocar comentarios no meio da linha # como este

Rebobinando a fita

Agora é hora de fixar alguns dos conceitos vistos no script anterior.
Variaveis

As variaveis sdo a base de qualquer script. E dentro delas que os dados obtidos durante a
execucao do script serdo armazenados. Para definir uma variavel, basta usar o sinal de
igual "=" e para ver seu valor, usa-se o "echo":

prompt$ VARIAVEL="um dois tres"
prompt$ echo $VARIAVEL

um dois tres

prompt$ echo S$VARIAVEL S$SVARIAVEL
um dois tres um dois tres
prompt$

& N&o podem haver espacos ao redor do igual "="

Ainda é possivel armazenar a saida de um comando dentro de uma variavel. Ao invés de
aspas, o comando deve ser colocado entre "$(...)", veja:

prompt$ HOJE=$ (date)

prompt$ echo "Hoje é: SHOJE"

Hoje é: S&b Abr 24 18:40:00 BRT 2004
prompt$ unset HOJE

prompt$ echo S$HOJE

prompt$

E finalmente, o comando "unset" apaga uma variavel.

@ Para ver quais as variaveis que o shell ja define por padréo, use o comando
"enV"

Detalhes sobre os comandos

Diferente de outras linguagens de programacao, o shell ndo usa os parénteses para
separar o comando de seus argumentos, mas sim o espago em branco. O formato de um
comando € sempre:

COMANDO OPCOES PARAMETROS

O comando "cat" mostra o contetdo de um arquivo. O comando "cat -n sistema" mostra o
nosso script, com as linhas numeradas. O "-n" é a opcao para o comando, que o instrui a
numerar linhas, e "sistema" é o ultimo argumento, 0 nome do arquivo.

Introdugé@o ao Shell Script - Aurélio Marinho Jargas

7

O "read" € um comando do préprio shell, ja o "date" & um executavel do sistema. Dentro
de um script, nao faz diferenga usar um ou outro, pois o shell sabe como executar ambos.
Assim, toda a gama de comandos disponiveis no Unix/Linux pode ser usada em scripts!

Ha véarios comandos que foram feitos para serem usados com o shell, sdo como
ferramentas. Alguns deles:

Comando Funcao Opcoes uteis
cat Mostra arquivo -n, -s
cut Extrai campo -d -f, -c
date Mostra data -d, +...
find Encontra arquivos |-name, -iname, -type f, -exec
grep Encontra texto -, -V, -1, -gs, -W -X
head |Mostra Inicio -n, -C
printf | Mostra texto nenhuma
rev Inverte texto nenhuma
sed Edita texto -n, s/isso/aquilo/, d
seq Conta Numeros -s, -f
sort Ordena texto -n, -f, -r, -k -t, -0
tail Mostra Final -n, -c, -f
tr Transforma texto |-d, -s, A-Z a-z
uniq Remove duplicatas |-i, -d, -u
wce Conta Letras -c, -w, -, -L

Use "man comando" ou "comando --help" para obter mais informacdes sobre
cada um deles.

E o melhor, em shell € possivel combinar comandos, aplicando-os em sequiéncia, para
formar um comando completo. Usando o pipe "|" é possivel canalizar a saida de um
comando diretamente para a entrada de outro, fazendo uma cadeia de comandos.
Exempilo:

prompt$ cat /etc/passwd | cut -cl-10

root:x:0:0

grep root |

operator:x
prompt$

Introdugé@o ao Shell Script - Aurélio Marinho Jargas

O cat mostra o arquivo todo, o grep pega essa saida e extrai apenas as linhas que contém
a palavra "root" e o cut por sua vez, somente nessas linhas que o grep achou, extrai os 10
primeiros caracteres. Isso funciona como uma estacao de tratamento de agua, onde ela

entra suja, vai passando por varios filtros que vao tirando as impurezas e sai limpa no final.

E por fim, também é possivel redirecionar a saida de um comando para um arquivo ao
invés da tela, usando o operador ">". Para guardar a saida do comando anterior no arquivo
"saida", basta fazer:

prompt$ cat /etc/passwd | grep root | cut -cl-10 > saida
prompt$ cat saida

root:x:0:0

operator:x

prompt$

A Cuidado! Shell é tao legal que vicia!

O comando test

O canivete suico dos comandos do shell é o "test", que consegue fazer varios tipos de
testes em numeros, textos e arquivos. Ele possui varias opcdes para indicar que tipo de
teste sera feito, algumas delas:

Testes em variaveis Testes em arquivos
-t |NGm. é menor que (LessThan) -d | E um diretério
-gt [NUm. é maior que (GreaterThan) -f |E um arquivo normal
-le |NUm. & menor igual (LessEqual) -r |O arquivo tem permissao de leitura

-ge [Num. é maior igual (GreaterEqual) -s | O tamanho do arquivo € maior que zero

-eq |Num. é igual (EQual) -w | O arquivo tem permissao de escrita

-ne |[Num. é diferente (NotEqual) -nt | O arquivo é mais recente (NewerThan)
= | String é igual -ot | O arquivo € mais antigo (OlderThan)
I= | String € diferente -ef | O arquivo é o mesmo (EqualFile)

-n | String € nao nula -a |E l6gico (AND)

-z | String é nula -0 |OU logico (OR)

10

Introdugé@o ao Shell Script - Aurélio Marinho Jargas

Tarefa: script que testa arquivos

Tente fazer o script "testa-arquivos”, que pede ao usuario para digitar um arquivo e testa
se este arquivo existe. Se sim, diz se € um arquivo ou um diretério. Exemplo de uso:

prompt$ testa-arquivos
Digite o arquivo: /naoexiste
O arquivo '/naoexiste' ndo foi encontrado

prompt$ testa-arquivos

Digite o arquivo: /tmp

/tmp € um diretério

prompt$ testa-arquivos

Digite o arquivo: /etc/passwd

/etc/passwd é um arquivo

prompt$

11

Conceitos mais avancados

Até agora vimos o basico, 0 necessario para se fazer um script de funcionalidade minima.
A seguir, conceitos novos que ampliarao as fronteiras de seus scripts!

Recebimento de opcoes e parametros

Assim como os comandos do sistema que possuem e opgdes e parametros, os scripts
também podem ser preparados para receber dados via linha de comando.

Dentro do script, algumas variaveis especiais sao definidas automaticamente, em especial,
"$1" contém o primeiro argumento recebido na linha de comando, "$2" o segundo, e assim
por diante. Veja o script "argumentos”:

#!/bin/sh
argumentos - mostra o valor das varidveis especiais

echo "O nome deste script é: $0"

echo "Recebidos $# argumentos: $*"

echo "O primeiro argumento recebido foi: $1"
echo "O segundo argumento recebido foi: $2"

Ele serve para demonstrar o conteudo de algumas variaveis especiais, acompanhe:

prompt$./argumentos um dois trés

O nome deste script é: ./argumentos
Recebidos 3 argumentos: um dois trés

O primeiro argumento recebido foi: um
O segundo argumento recebido foi: dois

O acesso é direto, basta referenciar a variavel que o valor j4 estara definido. Assim é
possivel criar scripts que tenham opgdes como --help, --version e outras.

Expressoes aritméticas

O shell também sabe fazer contas. A construcao usada para indicar uma expressao

aritmética é "$((...))", com dois parénteses.

prompt$ echo $((2*3))

6

prompt$ echo $((2*3-2/2+3))
8

prompt$ NUM=44

prompt$ echo $ ((NUM*2))

88

prompt$ NUM=$ ((NUM+1))
prompt$ echo $NUM

45

12

Introdugé@o ao Shell Script - Aurélio Marinho Jargas

If, for e while

Assim como qualquer outra linguagem de programacao, o shell também tem estruturas
para se fazer condicionais e loop. As mais usadas sao if, for e while.

if COMANDO for VAR in LISTA while COMANDO
then do do

comandos comandos comandos
else done done

comandos
fi

Diferente de outras linguagens, o if testa um comando e ndo uma condicdo. Porém como ja
conhecemos qual o comando do shell que testa condi¢des, € s6 usa-lo em conjunto com o
if. Por exemplo, para saber se uma variavel € maior ou menor do que 10 e mostrar uma
mensagem na tela informando:

if test "S$VARIAVEL" -gt 10

then

echo "é maior que 10"
else

echo "é menor que 10"
fi

Ha um atalho para o test , que é o comando [. Ambos sdo exatamente 0 mesmo comando,
porém usar o [deixa o if mais parecido com o formato tradicional de outras linguagens:

if ["SVARIAVEL" -gt 10]
then

echo "é maior que 10"
else

echo "é menor que 10"
fi

Se usar o [, também é preciso fecha-lo com o], e sempre devem ter espacos ao
redor. E recomendado evitar esta sintaxe para diminuir suas chances de erro.

Ja o while é um laco que é executado enquanto um comando retorna OK. Novamente o
test € bom de ser usado. Por exemplo, para segurar o processamento do script enquanto
um arquivo de lock nao é removido:

while test —-f /tmp/lock

do
echo "Script travado..."
sleep 1

done

13

Introdugé@o ao Shell Script - Aurélio Marinho Jargas

E por fim, o for percorre uma lista de palavras, pegando uma por vez:

for numero in um dois trés quatro cinco
do

echo "Contando: $numero"
done

Uma ferramenta muito Util para usar com o for é o seq, que gera uma seqiéncia numeérica.
Para fazer o loop andar 10 passos, pode-se fazer:

for passo in $(seqg 10)

O mesmo pode ser feito com o while, usando um contador:

i=0
while test $i -le 10
do
i=$((i+1))
echo "Contando: $i"
done

E temos ainda o loop infinito, com condicional de saida usando o "break™:

while
do
if test —-f /tmp/lock
then
echo "Aguardando liberacgado do lock..."
sleep 1
else
break
fi
done

14

Exercicios

A melhor parte finalmente chegou, agora € a sua vez de se divertir. Seguem alguns
exercicios que podem ser resolvidos usando o que foi aprendido até aqui.

Alguns exigirdo pesquisa e necessitardo de algumas ferramentas que foram apenas
citadas, mas nao aprendidas. O shelleiro também tem que aprender a se virar sozinho!

Exercicio 1 - relacao.sh

Recebe dois nUmeros como parametro e mostra a relacao entre eles. Exemplo:

prompt$./relacao.sh 3 5
3 é menor que 5

prompt$./relacao.sh 5 3
5 é maior que 3

prompt$./relacao.sh 5 5
5 ¢é igual a 5

prompt$

Exercicio 2 - zerador.sh

Recebe um nimero como parametro e o diminui até chegar a zero, mostrando na
tela cada passo, em uma mesma linha. Exemplo:

prompt$./zerador.sh 5
543210

prompt$./zerador.sh 10
10 987 6 543210
prompt$

Exercicio 3 - substring.sh

Recebe duas palavras como parametro e verifica se a primeira palavra esta contida
dentro da segunda. S6 mostra mensagem informativa em caso de sucesso, do
contrario ndo mostra nada. Exemplo:

prompt$./substring.sh ana banana
ana esta contida em banana

prompt$./substring.sh banana maria
prompt$./substring.sh banana
prompt$./substring.sh

prompt$

@ Pesquise sobre o comando grep

15

Introdugé@o ao Shell Script - Aurélio Marinho Jargas

Exercicio 4 - juntatudo.sh

Mostra na tela "grudados" todos os parametros recebidos na linha de comando,
como uma unica palavra. Exemplo:

prompt$./juntatudo.sh a b ¢ d e £ verde azul
abcdefverdeazul

prompt$

@ Pesquise sobre o comando tr

Exercicio 5 - users.sh

Do arquivo /etc/passwd, mostra o usuério e o nome completo de cada usuario do
sistema (campos 1 e 5) separados por um TAB. Exemplo:

prompt$./users.sh

ftp FTP User

nobody Nobody

named Domain name server

xfs X Font Server

mysql MySQL server

aurelio Aurelio Marinho Jargas
prompt$

: Pesquise sobre o comando cut

Exercicio 6 - shells.sh

Do arquivo /etc/passwd, mostra todos os shells (Gltimo campo) que os usuarios
usam. Nao mostrar linhas repetidas. Exemplo:

prompt$./shells.sh
/bin/bash
/bin/false
/bin/sync
/sbin/halt
/sbin/shutdown
prompt$

@ Pesquise sobre o comando uniq

16

Introdugé@o ao Shell Script - Aurélio Marinho Jargas

Exercicio 7 - parametros.sh

Mostra na tela todos os parametros recebidos na linha de comando, contando-os.
Exemplo:

prompt$./parametros.sh a b c d e f
Pardmetro 1: a

Pardmetro
Pardmetro
Pardmetro
Pardmetro

o U W N
O Q Q O

Paré&metro
prompt$

@ Pesquise sobre o comando shift

17

Mais informacoes

Livro Programacgé&o Shell Linux
Autoria de Julio Cezar Neves, Editora Brasport, ISBN 85-7452-118-3

Livro BASH - Guia de Consulta Rapida
Autoria de Joel Saade, Editora Novatec, ISBN 85-7522-006-3

Lista de discussao nacional sobre Shell Script
http://br.groups.yahoo.com/group/shell-script

Pagina do instrutor sobre Shell Script, com links para varios outros materiais
http://aurelio.net/shell

18

Respostas dos exercicios

Resista & tentagdo de olhar as respostas antes de tentar fazer os exercicios! E na pratica
que se consolida os conhecimentos aprendidos, ndo pule este passo. Seja forte, insista,

nao desistal

testa-arquivos

#!/bin/bash

echo -n "Digite o arquivo: "

read ARQUIVO

test —-d "SARQUIVO" && echo "SARQUIVO é um diretdrio"
test —f "S$SARQUIVO" && echo "$SARQUIVO é um arquivo"

test —-f "SARQUIVO" -o -d "SARQUIVO" || echo "O arquivo
echo
relacao.sh

#!/bin/bash

if test $1 -eq $2
then

echo "$1 é igual a $2"
elif test $1 -1t $2

then
echo "$1 é menor que $2"
else
echo "$1 é maior que $2"
fi
zerador.sh

#!/bin/bash

i=$1
while test $i —-ge O
do
echo -n "$i "
i=$((i-1))
done
echo

19

'SARQUIVO'

ndo foi encontrado"

Introdugé@o ao Shell Script - Aurélio Marinho Jargas

substring.sh

#!/bin/bash
test $# —-ne 2 && exit

echo $2 | grep —-gs $1 && echo "$1 estd contida em $2"

juntatudo.sh

#!/bin/bash

echo $* | tr -4 " "

users.sh

#!/bin/bash

cat /etc/passwd | cut -d : -f 1,5 | tr : '\t'
shells.sh

#!/bin/bash

cat /etc/passwd | cut -d : -f 7 | sort | uniqg
parametros.sh

#!/bin/bash

i=0

while test "S$1"

do
i=$((i+1))
echo "Pardmetro $i: $1"
shift

done

20

