
Introdução ao Shell Script

Aurélio Marinho Jargas

http://aurelio.net

Índice
Sobre o curso...1

Apresentação..2
O que é o shell..2
Shell script...3
Antes de começar..3

O primeiro shell script...4
Passos para criar um shell script...4
Problemas na execução do script..5

O primeiro shell script (melhorado)..6
Melhorar a saída na tela..6
Interagir com o usuário..6
Melhorar o código do script...7

Rebobinando a fita...8
Variáveis..8
Detalhes sobre os comandos..8
O comando test...10
Tarefa: script que testa arquivos...11

Conceitos mais avançados...12
Recebimento de opções e parâmetros..12
Expressões aritméticas..12
If, for e while..13

Exercícios...15

Mais informações...18

Respostas dos exercícios...19
testa-arquivos..19
relacao.sh..19
zerador.sh..19
substring.sh...20
juntatudo.sh...20
users.sh...20
shells.sh...20
parametros.sh..20

Introdução ao Shell Script - Aurélio Marinho Jargas

i

Sobre o curso

Nome
Introdução a Shell Scripts

Instrutor
Aurélio Marinho Jargas (http://aurelio.net)

Objetivo
Ensinar aos alunos todos os conceitos necessários para poderem fazer sozinhos
scripts simples em shell.

Pré-Requisitos
Noções básicas de informática e operação do sistema pela linha de comando. É
desejado, porém não obrigatório, noções básicas de programação.

Público Alvo
Desenvolvedores, administradores de sistemas, programadores e interessados em
geral.

Duração
8 horas

1

Apresentação

O que é o shell

O shell é o "prompt" da linha de comando do Unix e Linux, é o servo que recebe os
comandos digitados pelo usuário e os executa.

O shell é aquele que aparece logo após digitar-se a senha do usuário e entrar na tela
preta. Ou na interface gráfica, ao clicar no ícone do Xterm, rxvt, Terminal ou Console.

 localhost login: root
 Password:

 Last login: Fri Apr 16 01:57:28 on tty5
 [root@localhost root]# _

Ali está o shell, esperando ansiosamente por algum comando para ele poder executar.
Essa é a sua função: esperar e executar. Cada comando digitado é lido, verificado,
interpretado e enviado ao sistema operacional para ser de fato executado.

No Mac OS X, o shell está em Aplicativos > Utilitários > Terminal. No Windows é
preciso instalá-lo com o Cygwin.

Funcionando como uma ponte, o shell é a ligação entre o usuário e o kernel. O kernel é
quem acessa os equipamentos (hardware) da máquina, como disco rígido, placa de vídeo
e modem. Por exemplo, para o usuário ler um arquivo qualquer, toda esta hierarquia é
seguida:

USUÁRIO --> SHELL --> KERNEL --> DISCO RÍGIDO

Para os usuários do Windows, é fácil pensar no shell como um MSDOS melhorado. Ao
invés do C:\> aparece um [root@localhost root]#, mas o funcionamento é similar. Basta
digitar um comando, suas opções e apertar a ENTER que ele será executado. O comando
deve estar no PATH, mensagens de aviso são mandadas para a tela e Ctrl+C interrompe o
funcionamento. Isso tudo é igual em ambos.

Mas o shell é muito mais poderoso que seu primo distante. Além dos comandos básicos
para navegar entre diretórios e manipular arquivos, ele também possui todas as estruturas
de uma linguagem de programação, como IF, FOR, WHILE, variáveis e funções. Com isso,
também é possível usar o shell para fazer scripts e automatizar tarefas.

Este será o nosso foco: scripts em shell.

2

Shell script

Um script é um arquivo que guarda vários comandos e pode ser executado sempre que
preciso. Os comandos de um script são exatamente os mesmos que se digita no prompt, é
tudo shell.

Por exemplo, se de tempos em tempos você quer saber informações do sistema como
horário, ocupação do disco e os usuários que estão logados, é preciso digitar três
comandos:

 [root@localhost root]# date
 [root@localhost root]# df
 [root@localhost root]# w

É melhor fazer um script chamado "sistema" e colocar estes comandos nele. O conteúdo
do arquivo "sistema" seria o seguinte:

 #!/bin/bash
 date
 df
 w

E para chamar este script, basta agora executar apenas um comando:

 [root@localhost root]# sistema

Isso é um shell script. Um arquivo de texto que contém comandos do sistema e pode ser
executado pelo usuário.

Antes de começar

Se você está acessando o sistema como usuário administrador (root), saia e entre como
um usuário normal. É muito perigoso estudar shell usando o superusuário, você pode
danificar o sistema com um comando errado.

Se você não tem certeza qual o seu usuário, use o comando "whoami" para
saber

Como o prompt de usuário normal é diferente para cada um, nos exemplos seguintes será
usado "prompt$" para indicar o prompt da linha de comando.

Introdução ao Shell Script - Aurélio Marinho Jargas

3

O primeiro shell script

O primeiro shell script a fazer será o "sistema" do exemplo anterior, de simplesmente juntar
três comandos em um mesmo script.

Passos para criar um shell script

1. Escolher um nome para o script

Já temos um nome: sistema.

Use apenas letras minúsculas e evite acentos, símbolos e espaço em branco

2. Escolher o diretório onde colocar o script

Para que o script possa ser executado de qualquer parte do sistema, mova-o para um
diretório que esteja no seu PATH. Para ver quais são estes diretórios, use o comando:

 echo $PATH

Se não tiver permissão de mover para um diretório do PATH, deixe-o dentro de
seu diretório pessoal ($HOME).

3. Criar o arquivo e colocar nele os comandos

Use o nano, VI ou outro editor de textos de sua preferência para colocar todos os
comandos dentro do arquivo.

4. Colocar a chamada do shell na primeira linha

A primeira linha do script deve ser:

 #!/bin/bash

Para que ao ser executado, o sistema saiba que é o shell quem irá interpretar estes
comandos.

5. Tornar o script um arquivo executável

Use o seguinte comando para que seu script seja reconhecido pelo sistema como um
comando executável:

 chmod +x sistema

4

Problemas na execução do script

 "Comando não encontrado"

O shell não encontrou o seu script.

Verifique se o comando que você está chamando tem exatamente o mesmo nome
do seu script. Lembre-se que no Unix/Linux as letras maiúsculas e minúsculas são
diferentes, então o comando "SISTEMA" é diferente do comando "sistema".

Caso o nome esteja correto, verifique se ele está no PATH do sistema. O comando
"echo $PATH" mostra quais são os diretórios conhecidos, mova seu script para
dentro de um deles, ou chame-o passando o caminho completo.

Se o script estiver no diretório corrente, chame-o com um "./" na frente, assim:

prompt$./sistema

Caso contrário, especifique o caminho completo desde o diretório raiz:

prompt$ /tmp/scripts/sistema

 "Permissão Negada"

O shell encontrou seu script, mas ele não é executável.

Use o comando "chmod +x seu-script" para torná-lo um arquivo executável.

 "Erro de Sintaxe"

O shell encontrou e executou seu script, porém ele tem erros.

Um script só é executado quando sua sintaxe está 100% correta. Verifique os seus
comandos, geralmente o erro é algum IF ou aspas que foram abertos e não foram
fechados. A própria mensagem informa o número da linha onde o erro foi
encontrado.

Introdução ao Shell Script - Aurélio Marinho Jargas

5

O primeiro shell script (melhorado)

Nesse ponto, você já sabe o básico necessário para fazer um script em shell do zero e
executá-lo. Mas apenas colocar os comandos em um arquivo não torna este script útil.
Vamos fazer algumas melhorias nele para que fique mais compreensível.

Melhorar a saída na tela

Executar os três comandos seguidos resulta em um bolo de texto na tela, misturando as
informações e dificultando o entendimento. É preciso trabalhar um pouco a saída do script,
tornando-a mais legível.

O comando "echo" serve para mostrar mensagens na tela. Que tal anunciar cada comando
antes de executá-lo?

 #!/bin/bash
 echo "Data e Horário:"
 date
 echo
 echo "Uso do disco:"
 df
 echo
 echo "Usuários conectados:"
 w

Para usar o echo, basta colocar o texto entre "aspas". Se nenhum texto for colocado, uma
linha em branco é mostrada.

Interagir com o usuário

Para o script ficar mais completo, vamos colocar uma interação mínima com o usuário,
pedindo uma confirmação antes de executar os comandos.

 #!/bin/bash
 echo "Vou buscar os dados do sistema. Posso continuar? [sn] "
 read RESPOSTA
 test "$RESPOSTA" = "n" && exit
 echo "Data e Horário:"
 date
 echo
 echo "Uso do disco:"
 df
 echo
 echo "Usuários conectados:"
 w

O comando "read" leu o que o usuário digitou e guardou na variável RESPOSTA. Logo em
seguida, o comando "test" verificou se o conteúdo dessa variável era "n". Se afirmativo, o

6

comando "exit" foi chamado e o script foi finalizado. Nessa linha há vários detalhes
importantes:

O conteúdo da variável é acessado colocando-se um cifrão "$" na frente•
O comando test é útil para fazer vários tipos de verificações em textos e arquivos•
O operador lógico "&&", só executa o segundo comando caso o primeiro tenha sido
OK. O operador inverso é o "||"

•

Melhorar o código do script

Com o tempo, o script vai crescer, mais comandos vão ser adicionados e quanto maior,
mais difícil encontrar o ponto certo onde fazer a alteração ou corrigir algum erro.

Para poupar horas de estresse, e facilitar as manutenções futuras, é preciso deixar o
código visualmente mais agradável e espaçado, e colocar comentários esclarecedores.

 #!/bin/bash
 # sistema - script que mostra informações sobre o sistema
 # Autor: Fulano da Silva

 # Pede uma confirmação do usuário antes de executar
 echo "Vou buscar os dados do sistema. Posso continuar? [sn] "
 read RESPOSTA

 # Se ele digitou 'n', vamos interromper o script
 test "$RESPOSTA" = "n" && exit

 # O date mostra a data e a hora correntes
 echo "Data e Horário:"
 date
 echo

 # O df mostra as partições e quanto cada uma ocupa no disco
 echo "Uso do disco:"
 df
 echo

 # O w mostra os usuários que estão conectados nesta máquina
 echo "Usuários conectados:"
 w

Basta iniciar a linha com um "#" e escrever o texto do comentário em seguida. Estas linhas
são ignoradas pelo shell durante a execução. O cabeçalho com informações sobre o script
e seu autor também é importante para ter-se uma visão geral do que o script faz, sem
precisar decifrar seu código.

Também é possível colocar comentários no meio da linha # como este

Introdução ao Shell Script - Aurélio Marinho Jargas

7

Rebobinando a fita

Agora é hora de fixar alguns dos conceitos vistos no script anterior.

Variáveis

As variáveis são a base de qualquer script. É dentro delas que os dados obtidos durante a
execução do script serão armazenados. Para definir uma variável, basta usar o sinal de
igual "=" e para ver seu valor, usa-se o "echo":

prompt$ VARIAVEL="um dois tres"
prompt$ echo $VARIAVEL

 um dois tres
prompt$ echo $VARIAVEL $VARIAVEL

 um dois tres um dois tres
prompt$

Não podem haver espaços ao redor do igual "="

Ainda é possível armazenar a saída de um comando dentro de uma variável. Ao invés de
aspas, o comando deve ser colocado entre "$(...)", veja:

prompt$ HOJE=$(date)
prompt$ echo "Hoje é: $HOJE"

 Hoje é: Sáb Abr 24 18:40:00 BRT 2004
prompt$ unset HOJE
prompt$ echo $HOJE

prompt$

E finalmente, o comando "unset" apaga uma variável.

Para ver quais as variáveis que o shell já define por padrão, use o comando
"env"

Detalhes sobre os comandos

Diferente de outras linguagens de programação, o shell não usa os parênteses para
separar o comando de seus argumentos, mas sim o espaço em branco. O formato de um
comando é sempre:

 COMANDO OPÇÕES PARÂMETROS

O comando "cat" mostra o conteúdo de um arquivo. O comando "cat -n sistema" mostra o
nosso script, com as linhas numeradas. O "-n" é a opção para o comando, que o instrui a
numerar linhas, e "sistema" é o último argumento, o nome do arquivo.

8

O "read" é um comando do próprio shell, já o "date"" é um executável do sistema. Dentro
de um script, não faz diferença usar um ou outro, pois o shell sabe como executar ambos.
Assim, toda a gama de comandos disponíveis no Unix/Linux pode ser usada em scripts!

Há vários comandos que foram feitos para serem usados com o shell, são como
ferramentas. Alguns deles:

Comando Função Opções úteis

cat Mostra arquivo -n, -s

cut Extrai campo -d -f, -c

date Mostra data -d, +'...'

find Encontra arquivos -name, -iname, -type f, -exec

grep Encontra texto -i, -v, -r, -qs, -w -x

head Mostra Início -n, -c

printf Mostra texto nenhuma

rev Inverte texto nenhuma

sed Edita texto -n, s/isso/aquilo/, d

seq Conta Números -s, -f

sort Ordena texto -n, -f, -r, -k -t, -o

tail Mostra Final -n, -c, -f

tr Transforma texto -d, -s, A-Z a-z

uniq Remove duplicatas -i, -d, -u

wc Conta Letras -c, -w, -l, -L

Use "man comando" ou "comando --help" para obter mais informações sobre
cada um deles.

E o melhor, em shell é possível combinar comandos, aplicando-os em seqüência, para
formar um comando completo. Usando o pipe "|" é possível canalizar a saída de um
comando diretamente para a entrada de outro, fazendo uma cadeia de comandos.
Exemplo:

prompt$ cat /etc/passwd | grep root | cut -c1-10
 root:x:0:0
 operator:x

prompt$

Introdução ao Shell Script - Aurélio Marinho Jargas

9

O cat mostra o arquivo todo, o grep pega essa saída e extrai apenas as linhas que contêm
a palavra "root" e o cut por sua vez, somente nessas linhas que o grep achou, extrai os 10
primeiros caracteres. Isso funciona como uma estação de tratamento de água, onde ela
entra suja, vai passando por vários filtros que vão tirando as impurezas e sai limpa no final.

E por fim, também é possível redirecionar a saída de um comando para um arquivo ao
invés da tela, usando o operador ">". Para guardar a saída do comando anterior no arquivo
"saida", basta fazer:

prompt$ cat /etc/passwd | grep root | cut -c1-10 > saida
prompt$ cat saida

 root:x:0:0
 operator:x
prompt$

Cuidado! Shell é tão legal que vicia!

O comando test

O canivete suíço dos comandos do shell é o "test", que consegue fazer vários tipos de
testes em números, textos e arquivos. Ele possui várias opções para indicar que tipo de
teste será feito, algumas delas:

Testes em variáveis Testes em arquivos

-lt Núm. é menor que (LessThan) -d É um diretório

-gt Núm. é maior que (GreaterThan) -f É um arquivo normal

-le Núm. é menor igual (LessEqual) -r O arquivo tem permissão de leitura

-ge Núm. é maior igual (GreaterEqual) -s O tamanho do arquivo é maior que zero

-eq Núm. é igual (EQual) -w O arquivo tem permissão de escrita

-ne Núm. é diferente (NotEqual) -nt O arquivo é mais recente (NewerThan)

= String é igual -ot O arquivo é mais antigo (OlderThan)

!= String é diferente -ef O arquivo é o mesmo (EqualFile)

-n String é não nula -a E lógico (AND)

-z String é nula -o OU lógico (OR)

Introdução ao Shell Script - Aurélio Marinho Jargas

10

Tarefa: script que testa arquivos

Tente fazer o script "testa-arquivos", que pede ao usuário para digitar um arquivo e testa
se este arquivo existe. Se sim, diz se é um arquivo ou um diretório. Exemplo de uso:

prompt$ testa-arquivos
 Digite o arquivo: /naoexiste
 O arquivo '/naoexiste' não foi encontrado

prompt$ testa-arquivos
 Digite o arquivo: /tmp
 /tmp é um diretório

prompt$ testa-arquivos
 Digite o arquivo: /etc/passwd
 /etc/passwd é um arquivo

prompt$

Introdução ao Shell Script - Aurélio Marinho Jargas

11

Conceitos mais avançados

Até agora vimos o básico, o necessário para se fazer um script de funcionalidade mínima.
A seguir, conceitos novos que ampliarão as fronteiras de seus scripts!

Recebimento de opções e parâmetros

Assim como os comandos do sistema que possuem e opções e parâmetros, os scripts
também podem ser preparados para receber dados via linha de comando.

Dentro do script, algumas variáveis especiais são definidas automaticamente, em especial,
"$1" contém o primeiro argumento recebido na linha de comando, "$2" o segundo, e assim
por diante. Veja o script "argumentos":

 #!/bin/sh
 # argumentos - mostra o valor das variáveis especiais

 echo "O nome deste script é: $0"
 echo "Recebidos $# argumentos: $*"
 echo "O primeiro argumento recebido foi: $1"
 echo "O segundo argumento recebido foi: $2"

Ele serve para demonstrar o conteúdo de algumas variáveis especiais, acompanhe:

prompt$./argumentos um dois três
 O nome deste script é: ./argumentos
 Recebidos 3 argumentos: um dois três
 O primeiro argumento recebido foi: um
 O segundo argumento recebido foi: dois

O acesso é direto, basta referenciar a variável que o valor já estará definido. Assim é
possível criar scripts que tenham opções como --help, --version e outras.

Expressões aritméticas

O shell também sabe fazer contas. A construção usada para indicar uma expressão
aritmética é "$((...))", com dois parênteses.

prompt$ echo $((2*3))
 6
prompt$ echo $((2*3-2/2+3))

 8
prompt$ NUM=44
prompt$ echo $((NUM*2))

 88
prompt$ NUM=$((NUM+1))
prompt$ echo $NUM

 45

12

If, for e while

Assim como qualquer outra linguagem de programação, o shell também tem estruturas
para se fazer condicionais e loop. As mais usadas são if, for e while.

 if COMANDO for VAR in LISTA while COMANDO
 then do do
 comandos comandos comandos
 else done done
 comandos
 fi

Diferente de outras linguagens, o if testa um comando e não uma condição. Porém como já
conhecemos qual o comando do shell que testa condições, é só usá-lo em conjunto com o
if. Por exemplo, para saber se uma variável é maior ou menor do que 10 e mostrar uma
mensagem na tela informando:

 if test "$VARIAVEL" -gt 10
 then
 echo "é maior que 10"
 else
 echo "é menor que 10"
 fi

Há um atalho para o test , que é o comando [. Ambos são exatamente o mesmo comando,
porém usar o [deixa o if mais parecido com o formato tradicional de outras linguagens:

 if ["$VARIAVEL" -gt 10]
 then
 echo "é maior que 10"
 else
 echo "é menor que 10"
 fi

Se usar o [, também é preciso fechá-lo com o], e sempre devem ter espaços ao
redor. É recomendado evitar esta sintaxe para diminuir suas chances de erro.

Já o while é um laço que é executado enquanto um comando retorna OK. Novamente o
test é bom de ser usado. Por exemplo, para segurar o processamento do script enquanto
um arquivo de lock não é removido:

 while test -f /tmp/lock
 do
 echo "Script travado..."
 sleep 1
 done

Introdução ao Shell Script - Aurélio Marinho Jargas

13

E por fim, o for percorre uma lista de palavras, pegando uma por vez:

 for numero in um dois três quatro cinco
 do
 echo "Contando: $numero"
 done

Uma ferramenta muito útil para usar com o for é o seq, que gera uma seqüência numérica.
Para fazer o loop andar 10 passos, pode-se fazer:

 for passo in $(seq 10)

O mesmo pode ser feito com o while, usando um contador:

 i=0
 while test $i -le 10
 do
 i=$((i+1))
 echo "Contando: $i"
 done

E temos ainda o loop infinito, com condicional de saída usando o "break¨:

 while :
 do
 if test -f /tmp/lock
 then
 echo "Aguardando liberação do lock..."
 sleep 1
 else
 break
 fi
 done

Introdução ao Shell Script - Aurélio Marinho Jargas

14

Exercícios

A melhor parte finalmente chegou, agora é a sua vez de se divertir. Seguem alguns
exercícios que podem ser resolvidos usando o que foi aprendido até aqui.

Alguns exigirão pesquisa e necessitarão de algumas ferramentas que foram apenas
citadas, mas não aprendidas. O shelleiro também tem que aprender a se virar sozinho!

Exercício 1 - relacao.sh

Recebe dois números como parâmetro e mostra a relação entre eles. Exemplo:

prompt$./relacao.sh 3 5
 3 é menor que 5
prompt$./relacao.sh 5 3

 5 é maior que 3
prompt$./relacao.sh 5 5

 5 é igual a 5
prompt$

Exercício 2 - zerador.sh

Recebe um número como parâmetro e o diminui até chegar a zero, mostrando na
tela cada passo, em uma mesma linha. Exemplo:

prompt$./zerador.sh 5
 5 4 3 2 1 0
prompt$./zerador.sh 10

 10 9 8 7 6 5 4 3 2 1 0
prompt$

Exercício 3 - substring.sh

Recebe duas palavras como parâmetro e verifica se a primeira palavra está contida
dentro da segunda. Só mostra mensagem informativa em caso de sucesso, do
contrário não mostra nada. Exemplo:

prompt$./substring.sh ana banana
 ana está contida em banana
prompt$./substring.sh banana maria
prompt$./substring.sh banana
prompt$./substring.sh
prompt$

Pesquise sobre o comando grep

15

Exercício 4 - juntatudo.sh

Mostra na tela "grudados" todos os parâmetros recebidos na linha de comando,
como uma única palavra. Exemplo:

prompt$./juntatudo.sh a b c d e f verde azul
 abcdefverdeazul
prompt$

Pesquise sobre o comando tr

Exercício 5 - users.sh

Do arquivo /etc/passwd, mostra o usuário e o nome completo de cada usuário do
sistema (campos 1 e 5) separados por um TAB. Exemplo:

prompt$./users.sh
 ftp FTP User
 nobody Nobody
 named Domain name server
 xfs X Font Server
 mysql MySQL server
 aurelio Aurelio Marinho Jargas
prompt$

Pesquise sobre o comando cut

Exercício 6 - shells.sh

Do arquivo /etc/passwd, mostra todos os shells (último campo) que os usuários
usam. Não mostrar linhas repetidas. Exemplo:

prompt$./shells.sh
 /bin/bash
 /bin/false
 /bin/sync
 /sbin/halt
 /sbin/shutdown
prompt$

Pesquise sobre o comando uniq

Introdução ao Shell Script - Aurélio Marinho Jargas

16

Exercício 7 - parametros.sh

Mostra na tela todos os parâmetros recebidos na linha de comando, contando-os.
Exemplo:

prompt$./parametros.sh a b c d e f
 Parâmetro 1: a
 Parâmetro 2: b
 Parâmetro 3: c
 Parâmetro 4: d
 Parâmetro 5: e
 Parâmetro 6: f
prompt$

Pesquise sobre o comando shift

Introdução ao Shell Script - Aurélio Marinho Jargas

17

Mais informações

Livro Programação Shell Linux
Autoria de Julio Cezar Neves, Editora Brasport, ISBN 85-7452-118-3

Livro BASH - Guia de Consulta Rápida
Autoria de Joel Saade, Editora Novatec, ISBN 85-7522-006-3

Lista de discussão nacional sobre Shell Script
http://br.groups.yahoo.com/group/shell-script

Página do instrutor sobre Shell Script, com links para vários outros materiais
http://aurelio.net/shell

18

Respostas dos exercícios

Resista à tentação de olhar as respostas antes de tentar fazer os exercícios! É na prática
que se consolida os conhecimentos aprendidos, não pule este passo. Seja forte, insista,
não desista!

testa-arquivos

 #!/bin/bash

 echo -n "Digite o arquivo: "
 read ARQUIVO

 test -d "$ARQUIVO" && echo "$ARQUIVO é um diretório"
 test -f "$ARQUIVO" && echo "$ARQUIVO é um arquivo"

 test -f "$ARQUIVO" -o -d "$ARQUIVO" || echo "O arquivo '$ARQUIVO' não foi encontrado"

 echo

relacao.sh

 #!/bin/bash

 if test $1 -eq $2
 then
 echo "$1 é igual a $2"
 elif test $1 -lt $2
 then
 echo "$1 é menor que $2"
 else
 echo "$1 é maior que $2"
 fi

zerador.sh

 #!/bin/bash

 i=$1
 while test $i -ge 0
 do
 echo -n "$i "
 i=$((i-1))
 done
 echo

19

substring.sh

 #!/bin/bash

 test $# -ne 2 && exit

 echo $2 | grep -qs $1 && echo "$1 está contida em $2"

juntatudo.sh

 #!/bin/bash

 echo $* | tr -d ' '

users.sh

 #!/bin/bash

 cat /etc/passwd | cut -d : -f 1,5 | tr : '\t'

shells.sh

 #!/bin/bash
 cat /etc/passwd | cut -d : -f 7 | sort | uniq

parametros.sh

 #!/bin/bash

 i=0
 while test "$1"
 do
 i=$((i+1))
 echo "Parâmetro $i: $1"
 shift
 done

Introdução ao Shell Script - Aurélio Marinho Jargas

20

